DOI: 10. 13475/j. fzxb. 20191105407

二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能

姜兴茂,刘 奇,郭 琳

(武汉工程大学化工与制药学院,湖北武汉 430000)

摘 要 为研究双金属纳米颗粒间协同抗菌作用及防止金属纳米颗粒团聚 利用气溶胶一步法制备了"火龙果"型 高负载量(50%)二氧化硅包覆银铜双金属纳米颗粒抗菌剂 A_g -Cu/SiO₂。借助 X 射线衍射仪、透射电子显微镜、电 子能谱仪对 A_g -Cu/SiO₂ 的结构进行研究 并测试该材料对金黄色葡萄球菌和大肠杆菌的最低抑菌浓度(MIC)及 细菌的时间与杀菌曲线 研究了 2 种细菌胞内活性氧的生成情况。结果表明:银铜双金属纳米颗粒均匀分散在球 型二氧化硅内部 是现"火龙果"型结构;与 Cu/SiO₂ 和 A_g /SiO₂ 相比 相同负载量(50%)的 A_g -Cu/SiO₂ 有更好的 抗菌效果 对 2 种细菌的 MIC 值均为 2 μ g/mL 在 24 h 内可以充分抑制细菌生长; A_g -Cu/SiO₂ 生成活性氧的水平 明显高于单金属纳米颗粒 致使细菌死亡 从而说明双金属纳米颗粒具有协同抗菌作用。 关键词 二氧化硅; 气溶胶法; 抗菌剂; 金属纳米颗粒; 活性氧; 抗菌性能

中图分类号: 0 614.12 文献标志码: A

Structure and antibacterial properties of silica coated silver-copper nanoparticles

JIANG Xingmao , LIU Qi , GUO Lin

(School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430000, China)

Abstract In order to study the synergistic antibacterial effect between bimetallic nanoparticles and prevent metal nanoparticle agglomeration , a "dragon fruit" type of high-load (50%) silica coated silver-copper bimetallic nanoparticle antibacterial agent (Ag-Cu/SiO₂) was prepared using the aerosol one-step method. The structure of Ag-Cu/SiO₂ was characterized by X-ray diffraction , transmission electron microscopy , electron spectroscopy , and the minimum inhibitory concentration (MIC) and time-kill curves of 50% Ag-Cu/SiO₂ against *Staphylococcus aureus* and *Escherichia coli* was also studied. The formation of reactive oxygen species (ROS) in bacterial cells were subsequently investigated. The results show that the silver-copper bimetallic nanoparticles uniformly are dispersed in the spherical silica , presenting a "dragon fruit" structure. The Ag-Cu/SiO₂ has better antibacterial properties than Cu/SiO₂ and Ag/SiO₂ with the same loading (50%). The MIC of Ag-Cu/SiO₂ against both bacteria was 2 μ g/mL and the growth of bacteria was fully inhibited within 24 h. The level of ROS produced by Ag-Cu/SiO₂ is significantly higher than that of single metal nanoparticles and it causes the bacteria to die , indicating that the bimetallic nanoparticles have synergistic antibacterial effect.

Keywords silica; aerosol method; antibacterial agent; metallic nanoparticle; reactive oxygen species; antibacterial property

近年来,人类大量使用抗生素,导致越来越多的 细菌产生单一耐药性甚至多重耐药性。细菌耐药成 为人类健康的巨大威胁,若仅仅采用普通治疗手段, 细菌感染便会再次危害人类的生命安全,因此,寻找 新的抗菌物质成为当前科研人员研究的一个热点。 金属纳米材料因具有大的比表面积和独特的物理化

基金项目:国家自然科学基金面上项目(21878237);武汉市应用基础前沿项目(2108010401011291)

第一作者:姜兴茂(1965—),男,教授,博士。主要研究方向为纳米材料的制备与应用。

通信作者: 郭琳(1991一), 女, 讲师,博士。主要研究方向为多孔有机材料荧光性质的研究。E-mail: guolin2018@wit.edu.cn。

收稿日期: 2019-11-25 修回日期: 2020-08-13

学性质 使其在催化^[1]、抗菌^[2-3]等方面的应用前景 广受关注 ,一些具有抗菌能力的金属纳米粒子被研 究人员相继发现 ,如纳米银、纳米铜等。

纳米银是常见的广谱抗菌剂,拥有很好的生物 相容性,可以抑制多种细菌生长,并且不产生耐药 性^[4]。为了探索金属纳米颗粒对细菌的杀菌过程, 人们开始研究金属纳米颗粒的杀菌机制 发现活性 氧的生成和银纳米颗粒溶解释放 Ag⁺导致细菌死亡 是当前普遍认同的抗菌机制^[5-6]。铜是一种毒性较 低的药物,在抗菌治疗中应用十分广泛^[7]。铜^[8]、 氧化铜^[9-10]、氧化亚铜^[11]均可用于抗菌。一些研究 表明:和银相比,铜对细菌生长的抑制作用更为显 著^[12]。铜纳米颗粒有多种杀菌机制,如:破坏细胞 膜 损伤脱氧核糖核酸(DNA),抑制蛋白质的合成 及阻断不同的生化途径[13]。研究人员发现: 与铜、 银纳米颗粒相比较,银铜双金属纳米颗粒对细菌产 生更强的抗菌活性。抗菌活性由强到弱依次为:银 铜双金属纳米颗粒,银纳米颗粒,银、铜纳米颗粒混 合,铜纳米颗粒^[14]。Perdikaki 等^[15]发现,对大肠杆 菌而言,双金属 Ag/Cu 纳米颗粒-石墨烯杂化物比 Ag-石墨烯杂化物、Cu-石墨烯杂化物具有更好的抗 菌性能 归因于表面上 2 种不同金属之间的协同作 用。银铜双金属纳米颗粒卓越的抗菌活性得到研究 人员广泛的关注。由于金属纳米颗粒容易团聚导致 抗菌性能减弱,因此采用无毒载体包裹^[16]或负 载^[17] 金属纳米粒子,避免金属纳米粒子聚集。载体 的加入可以起到缓释作用进而使抗菌剂达到长效抗 菌的效果。

纳米二氧化硅球具有较好的生物相容性且制备 容易,因此,在生物医药领域一般使用二氧化硅作为 载体。目前,人们通常采用两步法制备二氧化硅负 载单金属纳米颗粒^[7,18]:第1步制备二氧化硅纳米 球;第2步将金属纳米颗粒沉积在二氧化硅纳米球 上。Isaacs等^[19]采用反向微乳法制备了Ag/SiO₂纳 米颗粒。上述材料制备方法均较为烦琐,需要多步 处理且只能负载1种金属纳米颗粒。气溶胶法是将 配制好的前驱体溶液通过雾化器雾化为气溶胶小液 滴,再由载气送入管式炉内,液滴在管式炉内蒸发、 结晶、干燥、分解反应、烧结并生成纳米颗粒,最终得 到纳米粒子的一种方法。气溶胶法是工业主导的纳 米粒子制备方法,具有可连续生产,扩大容易,纯度 高,颗粒球形度高,无需反复洗涤干燥,产品直接收 集,环境友好等优点。

本文采用气溶胶蒸发自组装技术制备"火龙 果"型高负载量 Ag-Cu/SiO₂ 纳米颗粒。与单金属 Ag、Cu/SiO₂ 纳米颗粒的抗菌性能对比发现,双金属 Ag-Cu/SiO₂ 纳米颗粒对革兰氏阳性的金黄色葡萄 球菌及革兰氏阴性的大肠杆菌均展现了更好的抗菌 活性。同时 通过研究细菌胞内活性氧的变化 进一 步探索了双金属纳米颗粒的协同抗菌机制。

1 实验部分

1.1 实验原料

硝酸银($A_{g}NO_{3}$, 纯度 \geq 99.95%)、硝酸铜 ($Cu(NO_{3})_{2} \cdot 3H_{2}O$)、无水乙醇、氯化钠、氯化钾、磷酸二氢钾、十二水磷酸氢二钠(分析纯),国药集团 化学试剂有限公司; 3 - 氨丙基三乙氧基硅烷 (APTES 純度为 99%),武汉格奥化学技术有限公 司;硝酸(含量为 66%~68%),武汉致远天合化工有 限公司;牛肉膏、蛋白胨,生化试剂,北京双旋微生物 培养基制品厂; 2,7-二氯二氢荧光素二乙酸酯 (DCFH-DA, 純度 \geq 97%),阿拉丁试剂有限公司。

菌种:金黄色葡萄球菌 Staphylococcus aureus (S. aureus, ATCC9118)、大肠杆菌 Escherichia coli (E. coli, CCTCC AB 93454),均由武汉工程大学环 境生态与生物工程学院提供。

1.2 实验仪器

OTL-1200 型高温管式炉(南京博蕴通仪器科 技有限公司);2极1500X4型空气压缩机(台州市奥 突斯工贸有限公司);SPH-200型氢气发生器(北京 中惠普分析技术研究所);BDL-A3型氮气机(石家 庄邦力机电设备有限公司);THZ-系列恒温培养摇 床(上海一恒科技有限公司);722E型紫外可见分 光光度计(天津市普瑞仪器有限公司);F-7100 FL 型荧光光谱仪(日本日立公司)。

1.3 Ag/SiO₂、Cu/SiO₂、Ag-Cu/SiO₂的制备

以负载量 50%双金属 Ag-Cu/SiO₂ 制备为例。

前驱体的制备:称取 0.926 9 g Cu(NO₃)₂• 3H₂O、0.651 1 g AgNO₃溶解于 25 mL 去离子水中, 其中 Ag 和 Cu 的量比为 1:1,搅拌使其完全溶解;以 APTES 为硅源,量取 4.857 8 g APTES 分散在 12.66 mL 无水乙醇中 将金属盐溶液与硅烷醇溶液 混合均匀,之后向其中加入 0.09 g 硝酸,超声振荡 5 min,然后使用磁力搅拌器搅拌,配制成为前驱体 溶液。各原料 APTES、H₂O、EtOH 和 HNO₃ 的量比 为 1:63.3:9.9:0.044 。

采用气溶胶法制备 Ag-Cu/SiO₂,实验流程如 图 1 所示,以混合气(氮气与氢气,载气压力为 0.2 MPa)为载气。首先将前驱体溶液雾化成微小 的气溶胶液滴,由混合载气将其送入 600 ℃的管式 炉中,气溶胶液滴在其中经过蒸发、结晶、热解、烧 结/熔融等一系列过程,再在管式炉出口处通以大量 氮气进行冷却、稀释,生成固体粉末,最后由收样器 中的滤纸收集固体粉末,该产物就是负载量为50% 的 Ag-Cu/SiO₂ 纳米颗粒。 Ag/SiO_2 、 Cu/SiO_2 的制备与其类似。称取 1.037 g $AgNO_3$ 制备负载量为50%的 Ag/SiO_2 称取 2.491 g $Cu(NO_3)_2 \cdot 3H_2O$ 制备负载量为50%的 Cu/SiO_2 。

图 1 采用气溶胶法制备纳米颗粒工艺流程示意图

Fig. 1 Schematic diagram of process flow for preparing nanoparticles by aerosol method

1.4 材料表征

所制备的样品通过 X 射线粉末衍射仪(XRD, Bruker axs D8 Discover) 进行表征,扫描范围为 5°~ 90°,Kα 射线(波长为 0.154 056 nm)。使用 FALCON60型能谱仪(EDS)测定样品中各元素的质 量分数。使用 Tecnai G2 F20 S-TWIN TMP 型透射 电镜(TEM) 观察样品形貌。使用 722E 型可见分光 光度计测定细菌悬浮液的吸光度(OD 值)。使用 F-7100 FL 型荧光光谱仪测定细菌细胞内活性氧的 荧光强度。

1.5 抗菌测试

通过测试所制备的负载量为 50%的 Ag/SiO₂、 Cu/SiO₂、Ag-Cu/SiO₂ 纳米颗粒对 *S. aureus* 及 *E. coli* 的最低抑菌浓度(MIC)和时间-杀菌曲线来评价其 抗菌性能。其中,灭菌处理后的牛肉膏蛋白胨培养 基和营养琼脂培养基用来培养所需的细菌。

1.5.1 最低抑菌浓度(MIC)的测定

通过常量稀释法测定细菌的 MIC 值。首先将 抗菌材料配制成 1 mg/mL ,之后将细菌接种于培养 基中 ,接着在恒温培养摇床(37 °C) 中培养 16~ 20 h ,把培养之后的细菌悬浮液用磷酸缓冲盐溶 液(PBS) 稀释至 10⁸ CFU/mL(通过分光光度计调节 吸光度 OD₆₀₀ 为 0. 12 左右)。首先向试管中加入培 养基 0.9 mL ,再向试管中加入适当的 PBS(PBS 的 量由加入抗菌材料的体积决定 ,保证溶液总体积为 2 mL) ,之后加入抗菌材料 ,接着向试管中滴加 100 μ L 细菌悬浮液(保证细菌悬浮液细菌浓度为 5×10⁵ CFU/mL 左右) ,最后在摇床中培养 24 h。培 养完成后观察试管的浑浊度 ,细菌悬浮液不浑浊且 透明时对应的抗菌材料最低浓度即为 MIC 值。实 验重复测试 3 次。

1.5.2 时间-杀菌曲线绘制

选取 Ag-Cu/SiO₂ 纳米颗粒对 *S. aureus* 及 *E. coli* 的 MIC 值为抗菌浓度,研究 Ag-Cu/SiO₂、 Cu/SiO₂、Ag/SiO₂ 纳米颗粒对细菌的时间-杀菌曲 线。用 PBS 溶液稀释细菌悬浮液,使菌液浓度约为 10^8 CFU/mL ,向灭菌锥形瓶中加入牛肉膏蛋白胨培 养基及 PBS 溶液,再向锥形瓶中分别加入 40 μ L 抗 菌材料(Ag-Cu/SiO₂、Cu/SiO₂、Ag/SiO₂),加入 5×10^5 CFU/mL 的细菌菌液,保证总体积为 20 mL。 未添加抗菌材料的为对照组。接着在 37 °C, 200 r/min 摇床内培养,取 0、4、8、12、16、20、24 h 时 间点的少许菌液,测定细菌悬浮液的 OD₆₀₀ 值,并绘 制时间-杀菌曲线,实验重复测定 3 次。通过测定 细菌悬浮液的 OD 值可以判断细菌浓度,OD 值越 低,细菌含量越少。

1.5.3 细胞内活性氧(ROS)的测定

挑取单独菌落于培养基中并在 37 ℃摇床中培 养 16~20 h,用 PBS 稀释至 10⁸ CFU/mL,将负载量 为 50%的 Ag-Cu/SiO₂、Cu/SiO₂、Ag/SiO₂ 加入到相 同体积的菌液中,使材料质量浓度为 2 μg/mL ,未添 加抗菌材料的细菌悬浮液为对照组。在 37 ℃条件 下培养6h后 5000 r/min 离心5 min 收集细菌细 胞,并倒出上清液。将2,7-二氯二氢荧光素二乙 酸酯溶液(10 μmol/L DCFH-DA) 加入到样品管中, 于 37 ℃条件下培养 20 min ,倒出上清液并洗涤样 品 3 次,保证去除多余的 DCFH-DA,以增强测试结 果的准确性。使用荧光光谱仪测定样品荧光强度 (激发波长为 450 nm ,发射波长为 535 nm),实验重 复测定3次。通过测定细菌悬浮液的荧光强度来评 价细菌胞内活性氧生成水平,由于细菌培养液的荧 光强度与细菌细胞内 ROS 含量成正比 因此由荧光 强度便可判断细菌胞内 ROS 含量的高低。

2 结果与讨论

2.1 二氧化硅包覆金属颗粒的表征分析

图 2 分别示出负载量为 50%的 Ag-Cu/SiO₂、 Ag/SiO₂、Cu/SiO₂的 XRD 图谱。可知,这 3 种材料 在 2 θ 为 23°处都有一个宽而大的峰,是 SiO₂标准特 征峰,说明样品中 SiO₂均是无定形的。图 2(a)为 Ag-Cu/SiO₂的 XRD 图谱,可知样品中存在单质银 特征峰(JCPDS 87-717 Ag),分别对应立方晶系银的 (111) (200) (220) (311)晶面。从 XRD 图谱看 不出单质 Cu 的特征峰,这是因为 Cu 被 SiO₂包覆使 其 3 个主峰位特征峰不明显,但不影响单质 Ag 特征 峰的出现。图 2(b)为 Ag/SiO₂的 XRD 图谱,样品 中存在单质银特征峰(JCPDS 87-717 Ag),且对应立 方晶系银的(111),(200),(220),(311)晶面。 图 2(c)为 Cu/SiO₂的 XRD 图谱,图谱中没有观察 到 Cu 的特征峰,这是因为 Cu 被 SiO₂包覆使其特征 峰不明显。为了进一步说明样品中存在相应的金属 元素,将上述 3 种样品进行 EDS 表征。图 3 分别示 出负载量为 50%的 Ag-Cu/SiO₂、Ag/SiO₂、Cu/SiO₂ 的 EDS 能谱图。图 3(a)显示,在 Ag-Cu/SiO₂中, 含有银铜 2 种金属,说明 Ag-Cu/SiO₂如米颗粒制 备成功。从图 3(b)看出 Ag/SiO₂中只含有银,说明 Ag/SiO₂制备成功。从图 3(c)可以看到材料中含 有铜元素,说明 Cu/SiO₂颗粒制备成功。

图 2 Ag-Cu/SiO2、Ag/SiO2、Cu/SiO2的 XRD 图谱

图 3 二氧化硅包覆金属纳米颗粒的 EDS 能谱图

对 3 种材料的形貌和金属纳米颗粒粒径进行表 征。图 4 示出 A_g -Cu/SiO₂、 A_g /SiO₂、Cu/SiO₂ 纳米 颗粒的 TEM 照片。可看出,这 3 种样品均是 SiO₂ 球包覆金属纳米粒子的结构,金属粒子分散较为均 匀。图 5 分别示出 3 种纳米颗粒的粒径分布图。由 图可知:银铜双金属纳米颗粒平均粒径约为 11 nm; 银纳米颗粒的平均粒径为 6. 18 nm;铜纳米颗粒的 平均粒径为 3. 31 nm。可见,成功制备出具有"火龙 果型"结构的 A_g -Cu/SiO₂、 A_g /SiO₂、Cu/SiO₂ 纳米 颗粒。

2.2 抗菌活性对比 通过最低抑菌浓度(MIC)实验,研究了Ag-Cu/

SiO₂、Cu/SiO₂、Ag/SiO₂及SiO₂纳米颗粒对*S. aureus* 和 *E. coli*的抗菌活性。表1示出这几种纳米材料对 *S. aureus*及*E. coli*的MIC值,其中Cu/SiO₂及SiO₂ 纳米颗粒的MIC值均大于256 μ g/mL,Ag/SiO₂对 *S. aureus*的MIC值为8 μ g/mL,对*E. coli*的MIC值 为4 μ g/mL,Ag-Cu/SiO₂对2种细菌的MIC值均为 2 μ g/mL。可知双金属Ag-Cu/SiO₂相比Cu/SiO₂、 Ag/SiO₂及SiO₂纳米颗粒,展现了更强的抗菌活性, 这是因为银铜之间的协同效应使抗菌活性加 强^[15,20-21]。制备的Ag-Cu/SiO₂双金属纳米抗菌剂 的抗菌活性比已经报道的其他双金属纳米抗菌剂的 抗菌活性要强^[22-23]。

(a) Ag–Cu/SiO₂

(b) Ag/SiO₂

(c) Cu/SiO₂

Fig. 4 TEM images of silica-coated metal nanoparticles

图 5 二氧化硅包覆金属纳米颗粒的粒径分布图

Fig. 5 Particle size distribution of silica-coated metal nanoparticles

E. coli 的最低抑菌浓度 μg/mL Tab.1 Minimum inhibitory concentration of *S. aureus* and *E. coli* with different silica coated metal nanoparticles

样品	S. aureus	E. coli
SiO ₂	>256	>256
Cu/SiO_2	>256	>256
Ag/SiO_2	8	4
$Ag-Cu/SiO_2$	2	2

2.3 时间-杀菌曲线分析

通过检测细菌悬浮液的吸光度(OD₆₀₀) 绘制了

Ag-Cu/SiO₂、Ag/SiO₂、Cu/SiO₂ 对 S. aureus 及 E. coli 的时间-杀菌曲线 如图 6 所示。

从图 6(a) 可以看出: 对 *S. aureus* 而言,对照组 和加入 Cu/SiO_2 纳米颗粒的培养液中细菌浓度在 0~4h 增长缓慢 4~8h 急速增长 ,8~12h 放缓增 长 ,12~24h 停止增长; 加入 Ag/SiO_2 纳米颗粒的培 养液 在 0~4h 可以抑制细菌的生长,但之后细菌 便快速增长; 加入双金属纳米颗粒 $Ag-Cu/SiO_2$ 的 培养液 在 24h 内细菌的含量很低,能够充分抑制 细菌的增长。从图 6(b) 可以看出,对 *E. coli* 而言,

图 6 Ag-Cu/SiO₂、Ag/SiO₂和 Cu/SiO₂对 S. aureus 和 E. coli 的时间-杀菌曲线 Fig. 6 Time-kill curves of S. aureus and E. coli treated with Ag-Cu/SiO₂, Ag/SiO₂ and Cu/SiO₂ 对照组和加入 Cu/SiO₂ 纳米颗粒的杀菌曲线趋势基 本一致,培养液中细菌在 24 h 内不断生长;加入 Ag/SiO₂ 纳米颗粒的培养液,在 0~16 h 能够抑制细 菌生长,细菌在 20 h 之后增长速度变快;加入双金 属纳米颗粒 Ag-Cu/SiO₂ 的培养液,在 24 h 内细菌 的含量很低,能够充分抑制细菌的增长。与 Ag/ SiO₂ 和 Cu/SiO₂ 相比,Ag-Cu/SiO₂ 在一定时间内能 有效地抑制细菌增长,进一步验证了双金属纳米颗 粒之间的协同抗菌效应。

2.4 杀菌机制分析

金属纳米颗粒的抗菌活性与细胞内活性氧 (ROS) 含量有关。DCFH-DA 荧光探针是检测胞内 ROS 水平的一种途径, DCFH-DA 探针进入细菌胞 内,与酯酶作用后被水解生成二氯荧光黄素 (DCFH) 最后不能通过细胞膜且无荧光的 DCFH 被 ROS 氧化为具有荧光的二氯荧光素(DCF)。表 2 示出不同二氧化硅包覆金属纳米颗粒对 S. aureus 和 E. coli 的相对荧光强度。可以看出,经过处理后 S. aureus 和 E. coli 的荧光强度有不同幅度的增强, 说明细菌胞内活性氧含量不同程度的增多是因为 Ag-Cu/SiO₂、Ag/SiO₂、Cu/SiO₂的加入,其中 Ag-Cu/SiO₂>Ag/SiO₂>Cu/SiO₂。对 S. aureus 而言 加入 Ag-Cu/SiO₂ 后胞内活性氧的荧光强度是 Ag/SiO₂ 的 1.79 倍, 是 Cu/SiO2 的 2.89 倍; 对 E. coli 而言, 加入 Ag-Cu/SiO, 后胞内活性氧的荧光强度是 50% Ag/SiO₂ 的 1.09 倍 是 Cu/SiO₂ 的 1.77 倍。研究表 明 过量 ROS 会损伤生物大分子最终使细菌死 亡^[24]。结合金属纳米颗粒的抗菌活性结果发现, ROS 含量与抗菌活性成正比。进一步的说明, Ag-Cu/SiO₂ 中 Ag、Cu 之间产生了协同作用使 ROS 水平大幅增加,进而使其抗菌活性增强,因此认为 Ag-Cu/SiO2 使细菌胞内活性氧含量大幅增加 ,以致 细菌死亡是银铜双金属间协同抗菌作用表现形式之 一 故 Ag-Cu/SiO, 产生大量 ROS 是该双金属纳米 材料的一种协同抗菌机制。

表 2 不同二氧化硅包覆金属纳米颗粒对 S. aureus 和 E. coli 的相对荧光强度

 Tab. 2
 Relative fluorescence intensity of S. aureus

 and E. coli with different silica coated

metal nanoparticles			
	相对荧光强度		
	S. aureus	E. coli	
SiO_2	1 222	1 915	
Cu/SiO ₂	1 348	2 730	
Ag/SiO_2	2 177	4 404	
$Ag-Cu/SiO_2$	3 902	4 831	

3 结 论

本文采用气溶胶一步法成功制备了"火龙果" 型二氧化硅包覆银铜双金属纳米颗粒 Ag-Cu/SiO₂, 并将其对金黄色葡萄球菌和大肠杆菌进行抗菌性能 及抗菌机制研究,得出以下主要结论。

1) Ag-Cu/SiO₂ 是一种高负载量的强效抗菌剂 对金黄色葡萄球菌和大肠杆菌均具有优良的抗菌效果 其最低抑菌浓度(MIC 值) 均为2 μg/mL 并且在 24 h 内可以充分抑制细菌生长。

 2) 与单金属纳米颗粒 Ag/SiO₂ 和 Cu/SiO₂ 相 比,双金属纳米颗粒 Ag-Cu/SiO₂ 的抗菌活性更强,
 这是因为双金属之间的协同作用引起的。

3) 通过测量加入金属纳米颗粒之后细菌胞内 活性氧的含量发现,纳米颗粒抗菌剂的加入使活性 氧含量不同程度的增多。与 Ag/SiO₂、Cu/SiO₂ 相 比,Ag-Cu/SiO₂ 的双金属之间的协同作用使胞内活 性氧水平明显增高,大量胞内活性氧会导致细菌死 亡,从而使 Ag-Cu/SiO₂ 展现了更强的抗菌活性。

参考文献:

- [1] HAN S H, BAI J, LIU H M, et al. One-Pot fabrication of hollow and porous Pd-Cu alloy nanospheres and their remarkably improved catalytic performance for hexavalent chromium reduction [J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30948-30955.
- [2] NOWAK A, SZADE J, TALIK E, et al. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles [J]. Materials Characterization, 2016, 117: 9–16.
- [3] ASHFAQ M, VERMA N, KHAN S. Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: a novel potential antibiotic material [J]. Materials Science and Engineering C, 2016, 59: 938–947.
- [4] 赵兵,黄小萃,祁宁,等. 基于共价结合的纳米银抗 菌棉织物研究进展[J]. 纺织学报,2020,41(3): 188-196.

ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(3): 188–196.

- [5] FENG Q L, WU J, CHEN G Q, et al. A mechanistic study of the antibacterial effect of silver ions on *Escherichia coli* and *Staphylococcus aureus* [J]. Journal of Biomedical Materials Research, 2000, 52(4): 662– 668.
- [6] CHOI O, HU Z Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria [J]. Environmental Science & Technology,

2008 , 42(12) : 4583-4588.

- [7] KIM Y H , LEE D K , CHA H G , et al. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO₂ nanoparticles [J]. Journal of Physical Chemistry B , 2006 , 110(49) : 24923–24928.
- [8] RUPARELIA J P, CHATTERJEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles [J]. Acta Biomaterialia, 2008, 4(3): 707-716.
- [9] REN G G, HU D W, CHENG E W C, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications [J]. International Journal of Antimicrobial Agents, 2009, 33(6): 587–590.
- [10] ALZAHRANI K E , NIAZY A A , ALSWIELEH A M , et al. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles [J]. International Journal of Nanomedicine , 2018 , 13: 77–87.
- [11] WU W T , ZHAO W J , WU Y H , et al. Antibacterial behaviors of Cu₂O particles with controllable morphologies in acrylic coatings [J]. Applied Surface Science , 2019 , 465: 279–287.
- [12] VALODKAR M, MODI S, PAL A, et al. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: a green approach [J]. Materials Research Bulletin, 2011, 46(3): 384–389.
- [13] BAGCHI B, DEY S, BHANDARY S, et al. Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates [J]. Materials Science and Engineering C, 2012, 32(7): 1897–1905.
- [14] ZAIN N M, STAPLEY A G F, SHAMA G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications [J]. Carbohydrate Polymers, 2014, 112: 195–202.
- [15] PERDIKAKI A, GALEOU A, PILATOS G, et al. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle-graphene composites with enhanced antibacterial performance [J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27498–27510.

- [16] XU P , LIANG J , CAO X Y , et al. Facile synthesis of monodisperse of hollow mesoporous SiO₂ nanoparticles and in-situ growth of Ag nanoparticles for antibacterial [J]. Journal of Colloid and Interface Science , 2016 , 474: 114-118.
- [17] QIN R , LI G A , PAN L P , et al. Preparation of SiO₂@ Ag composite nanoparticles and their antimicrobial activity [J]. Journal of Nanoscience and Nanotechnology , 2017 , 17: 2305-2311.
- [18] ZHANG N C, GAO Y H, ZHANG H, et al. Preparation and characterization of core-shell structure of SiO₂ @ Cu antibacterial agent [J]. Colloids and Surfaces B: Biointerfaces, 2010, 81: 537-543.
- [19] ISAACS M A , DURNDELL L J , HILTON A C , et al. Tunable Ag@ SiO₂ core-shell nanocomposites for broad spectrum antibacterial applications [J]. RSC Advances , 2017 , 7(38) : 23342–23347.
- [20] FANG W J, XU C F, ZHENG J, et al. Fabrication of Cu-Ag bimetal nanotube-based copper silicates for enhancement of antibacterial activities [J]. RSC Advances, 2015, 5: 39612–39619.
- [21] ZHANG M, WANG P, SUN H Y, et al. Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity [J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22108–22115.
- [22] BAKINA O V, GLAZKOVA E A, SVAROVSKAYA N V, et al. 《Janus》-like Cu-Fe bimetallic nanoparticles with high antibacterial activity [J]. Materials Letters, 2019, 242: 187-190.
- [23] SAXENA V, PANDEY L M. Bimetallic assembly of Fe (III) doped ZnO as an effective nanoantibiotic and its ROS independent antibacterial mechanism [J]. Journal of Trace Elements in Medicine and Biology, 2020,57: 134-145.
- [24] KOHANSKI M A, DWYER D J, HAYETE B, et al. A common mechanism of cellular death induced by bactericidal antibiotics [J]. Cell, 2007, 130(5): 797– 810.