颗粒在线讯:传统的锂离子电池(LIBs)在可达到的能量密度方面已接近其理论极限,因此需要新的化学物质来储存锂离子,以使其能量密度远超过今天基于嵌入机制运行的LIBs。自20世纪70年代以来,金属锂由于其较高的理论比容量(3860 mAh g−1)和极低的电极电位(-3.040 V与标准氢电极相比),而被作为广泛研究的负极材料。采用锂金属负极的锂金属电池(LMBs)可以克服LIBs的能量密度限制,但是,目前还有一些固有的技术障碍需要克服,例如锂枝晶生长和由此产生的不可控固体电解质界面(SEI)形成。这种界面不稳定性还与循环和过热期间金属锂的高反应性有关,这可能导致较差的循环性能和安全隐患。
鉴于此,瑞士弗里堡大学Ali Coskun教授报道了一种含有咪唑离子液体端基和全氟烷基链(F-IL)的凝胶聚合物电解质,通过聚合物主链中的路易斯酸性链段从根本上改变盐在凝胶电解质中的溶解度,从而实现高离子电导率和锂离子转移数。此外,F-IL 部分的存在降低了锂离子对二醇链的结合亲和力,使锂离子能够在凝胶网络内快速转移。这些结构特征使阴离子固定在离子液体链段上以减轻空间电荷效应,同时促进路易斯酸性聚合物中更强的阴离子配位和较弱的阳离子配位。结果,该凝胶聚合物电解质同时实现了高锂离子电导率(9.16 × 10-3 S cm-1 )和高锂离子迁移数(0.69),以及高达4.55 V的良好电化学稳定性,同时有效抑制了锂枝晶生长。
文章亮点:
1. 报道了一种新型凝胶聚合物电解质(F-IL-GEL),其由氟化烷基侧链的IL(F-IL)、二季戊四醇五/六丙烯酸酯(DPEPA)和聚(乙二醇)甲基丙烯酸酯(PEGMA,平均Mn = 500)组成。
2. PEGMA用于通过乙二醇链实现高离子电导率,而DPEPA通过丰富的丙烯酸酯官能团形成高度交联的凝胶网络,并引入侧链F-IL以提供多种功能,即通过与路易斯酸性位点的非共价相互作用有效固定锂盐阴离子,降低锂离子对二醇链氧原子的亲和力,并提高交联凝胶聚合物电解质(CGPE)的电化学稳定性。
3. 该凝胶聚合物电解质同时实现了高锂离子电导率(9.16 × 10-3 S cm-1 )和高锂离子迁移数(0.69),以及高达4.55 V的良好电化学稳定性,同时有效抑制了锂枝晶生长。此外,该凝胶聚合物电解质使Li|Li对称电池在9 mAh cm-2下稳定循环超过1800小时,并且使锂硫(Li-S)全电池循环250次后仍保持原始容量的86.7%。
图1 凝胶聚合物电解质的合成及作用示意图
图2 凝胶聚合物电解质对锂沉积形貌的影响
图3 电化学性能
版权与免责声明:
(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。
(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。
(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。