颗粒在线讯:近日,中国科学院上海高等研究院低碳转化科学与工程重点实验室研究员曾高峰团队在石墨烯复合膜的改性与结构调控及在海水淡化中分离机理的研究取得新进展。该工作以Interfacial Ions Sieving for Ultrafast and Complete Desalination through 2D Nanochannel Defined Graphene Composite Membranes为题,发表在《美国化学会纳米》(ACS Nano)上。
二维石墨烯基材料,如氧化石墨烯(GO),因其接近单原子厚度、可调控的纳米结构以及不易降解结垢的特性,在膜分离领域取得大量研究成果。但是,GO片层的亲水性和层间弱相互作用会阻碍水传输并易溶胀,因此GO膜在小离子脱盐中并无优异性能,而石墨烯具有二维结构以及憎水光滑低阻表面,使其在脱盐方面具有潜力。
科研人员在前期膜材料研究基础上(ACS Cent Sci 2019, 5, 1834; Adv Mater 2018, 1705775; J Membrane Sci 2018, 552, 13; Nat Commun 2017, 8, 825; Chem Eng J 2017, 313, 957),开发出简单易行的硫醇-烯点击法制备全氟烷基接枝石墨烯(fGraphene)复合膜,其片层通道被精确控制在~1.1 nm。在接触式膜蒸馏测试中,fGraphene膜对盐水小离子具有近乎完全的脱盐率,而水通量则达到30 LMH,比商用膜和GO膜高数十倍(图1)。fGraphene膜优异的快速离子脱除性能归因于其独特的双重传质孔道网络,即大部分液态水不经过相变直接从二维纳米通道界面传输。该工作首次展示出在堆叠态多层石墨烯基膜上能够实现高效脱盐,提供了石墨烯膜功能化的方法,揭示了传输机理,为石墨烯材料在膜分离领域的更多应用提供可能。
研究工作得到国家自然科学基金委员会、中科院青年创新促进会和上海市科学技术委员会的资助。
fGraphene膜界面筛分示意图及不同浓度NaCl溶液的水通量
版权与免责声明:
(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。
(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。
(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。