颗粒在线讯:由于光动力疗法具有选择性高、疗效显著、副作用低等优势,近年来已广泛应用于包括皮肤肿瘤在内的多种疾病的临床治疗中。其中光敏剂、激发光和氧气这三要素缺一不可。然而,水溶性光敏剂的生物利用度低、可见光对生物组织的穿透能力差以及肿瘤的乏氧微环境等因素严重阻碍了光动力疗法在实体肿瘤治疗中的应用。因此,提高肿瘤部位光敏剂和氧气含量以及增加光敏剂对激发光的敏感性,对于提升光动力疗效具有重要意义。
中国科学院化学研究所研究员李峻柏团队对光敏剂的可控组装与高效递送进行了长期系统化研究。在前期的研究工作中,通过分子组装技术,结合多种分子间作用方式,构建了一系列可显著提高肿瘤光动力疗效的纳米结构(Angew. Chem. Int. Ed. 2018, 57, 6049; Angew. Chem. Int. Ed. 2018, 57, 7759; Nano Lett. 2019, 19, 1821)。
近日,该团队通过酰胺缩合反应及非共价作用诱导的自组装过程,得到超敏感的增氧型光敏剂纳米粒子,该纳米粒子在0.05 mW/cm2的微弱光照射下就能够生成单线态氧。他们进一步分析了造成光敏剂敏感性增强的因素。该纳米粒子可显著提高肿瘤细胞对水溶性光敏剂的内吞效率,具有显著的光动力疗效和较低的毒副作用,有望将光动力治疗范围扩大到实体肿瘤中。相关研究成果发表在Angew. Chem. Int. Ed.上。
增氧型光敏剂制备及其肿瘤光动力治疗原理
来源:化学研究所
下一篇: 力学研究所:微纳颗粒热泳机理研究获进展
版权与免责声明:
(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。
(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。
(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。