电荷输运机制的研究是设计与构筑新型纳米电子器件的基础。和半导体器件中的电子信号不同,生命体内信息的处理往往基于复杂的离子和电子同时参与的物质输运过程。因此,揭示离子电荷与电子电荷耦合输运的基本规律,通过人工操控两种电荷之间的相互作用与输运过程以构筑纳米电子器件具有重要的科学意义、创新性与应用价值。
在前期研究中,国家纳米科学中心纳米系统与多级次制造重点实验室研究员鄢勇团队采用带电金属纳米颗粒,结合器件结构设计创新,通过控制纳米颗粒薄膜内的离子与电子电荷的浓度梯度分布,实现了类传统半导体pn结的双层结构金属纳米颗粒二极管(Nature Nanotechnology, 2016, 11, 603-608, Cover art)以及具有不对电极的单层结构金属纳米颗粒整流器件的成功构筑(Science Advances, 2018, 4, eaau3546)。
近期,鄢勇团队与西北工业大学教授李铁虎、韩国蔚山科技大学(UNIST)教授Bartosz Grzybowski等科研人员合作,通过进一步创新器件结构,设计并构筑出一种五电极结构的金属纳米颗粒薄膜晶体管。五电极结构中三个门电极高度对称以降低漏电流,采用碳材料电极以实现显著的电荷浓度梯度分布。晶体管的输出曲线与转移曲线表明,门电压可有效调制源漏电极之间的输出,但这种调制现象在不带电的纳米颗粒薄膜中未观测到。同时,器件的性能可通过降低沟道尺寸得到优化,在65 μm线宽下,晶体管的开关比达到400左右。此外,研究人员通过监测可迁移的对离子的浓度分布(EDS)与纳米颗粒薄膜的表面电势(KFM),结合理论模拟(能斯特-普朗克方程与泊松方程),重现了所有的实验结果。基于该晶体管可构筑非门,结合纳米颗粒二极管与电阻,实现了与门、或门、与非门以及或非门等基本逻辑,集成实现了全金属纳米颗粒半加器的逻辑输出。需要指出的是,有别于半导体晶体管,金属纳米颗粒器件能够抵抗高电压静电(10 kV)的损伤。
相关研究成果以Transistors and logic circuits based on metal nanoparticles and ionic gradients为题,发表在Nature Electronics(DOI: 10.1038/s41928-020-00527-z)上。研究工作得到中国科学院战略性先导科技专项(B类)、国家自然科学基金、中科院高层次人才计划等项目的支持。
左图:金属纳米颗粒晶体管示意图;右图:全金属纳米颗粒半加器
上一篇: 钠离子电池或成我国能源超车新赛道
版权与免责声明:
(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。
(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。
(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。