G-四链体是由一段或几段富G序列通过分子内或分子间Hoogsteen氢键连接成具有四股核苷酸链的DNA二级结构,特定的阳离子(K+、Na+、NH4+等)位于结构中心进一步稳定结构。相对于双链DNA来说,G-四链体结构具有离子依赖性,并根据富G序列的不同特点呈现出不同的结构形态,因此为许多生物有机小分子提供不同的识别位点。这些小分子配体不仅可以识别特定构型的G-四链体,形成复合物结构后还能显示出特别的生物活性。其中,G-四链体与高铁血红素(hemin)形成的复合物显示出过氧化物酶催化活性,因此被称为G-四链体/hemin脱氧核酶(G4/hemin DNAzyme),又叫G-四链体过氧化物酶。目前,作为一种人工酶或催化剂,G-四链体过氧化物酶被应用在生物分析、分子机器和DNA传感器等多个领域。相较于传统的催化酶,它具有低成本、易操作和高稳定性等优势,这使得探究其催化的内在机理、提升催化活性的研究变得愈加重要。然而,已有研究仅给出一些经验式结论,如hemin更倾向于与平行或混杂型的G-四链体结合,hemin主要与平行G-四链体的3′末端的G-平面作用等。
为探究G-四链体过氧化物酶催化的内在机理、一般规律以及建立高效的催化体系,中国科学院苏州纳米技术与纳米仿生研究所研究员裴仁军课题组展开系列工作。项目团队研究在d(G3TG3TG3TG3)序列(简写为TTT,它主要形成分子内平行G-四链体)的不同位置处引入极性转折位点,即设计3′G5′-5′GGTG3TG3TG3-3′(G55TTT)、3′G3TG35′-5′TG3TG3-3′(TG55TT)、5′G3TG3TG3TGG3′-3′G5′(TTTG33)和5′G3TG3T3′-3′G3TG3-5′(TTG33T)四条序列,探究不同序列修饰对于结构形成和稳定性的影响。实验结果表明,以上修饰不会改变结构的平行构型,然而不同极性转折位点的引入对G-四链体结构稳定性和结构末端堆积具有重要影响:如当序列中末端一个G碱基发生转置时,G-四链体结构的稳定性和分子间末端堆积相应增强,因此修饰后富G序列形成的G-四链体与卟啉分子(如NMM和hemin)的相互作用增强,有利于提升G-四链体过氧化物酶的催化活性;相反,如果在序列的中间位置(靠近中间T碱基处)引入转折位点,G-四链体结构的稳定性和分子间末端堆积相应减弱,不利于四链DNA结构与hemin的结合(图1)。该研究发表在Wiley旗下杂志Chemistry-A European Journal上。
项目团队选取较短的d(AGGGGA)序列为初始研究对象,该序列主要形成四分子平行G-四链体,末端的A碱基作为酸碱催化剂有利于进一步提升体系的催化活性。实验中,对d(AGGGGA)序列中的G碱基的8号位点进行选择性溴代修饰,改变鸟嘌呤核苷的顺反异构,获得不同构型的末端G-平面。设计d(AGBrGBrGGA)(F12)、d(AGBrGGGBrA)(F14)和d(AGBrGGBrGA)(F13)三条序列,形成四链结构(图2A-2D)。图2E-2F显示,它们与卟啉分子NMM和hemin结合后荧光性能和催化活性大小顺序为:AG4A ≈F12>F14>F13。hemin亲和力测试实验与上述结果保持一致,由此可以得出平行G-四链体催化活性大于反平行G-四链体主要是由于结构中含有3′-末端G-平面,且末端G-平面中反式的鸟嘌呤核苷更有利于与hemin结合发挥催化性能。
在此基础上,研究团队对d(AGGGGA)序列进一步修饰——在序列的不同位置处引入极性转折位点,设计3'AG5'-5'GGGA3'(AGS55)、3'AGG5'-5'GGA3'(AG55)、5'A3'-3'GG5'-5'GG3'-3'A5'(A33G55)、3'A5'-5'GG3'-3'GG5'-5'A3'(A55G33)和5'AGG3'-3'GGA5'(AG33)五条序列,形成四链结构(图3)。对比后发现,它们的催化活性大小顺序为:AG55>AGS55>A33G55>A55G33>AG4A>>AG33(图4)。结合hemin亲和力实验结果可以得出,增加3′-末端G-平面和3′A碱基的个数均可以提升G-四链体过氧化物酶的催化活性。该研究成果发表在Royal Society of Chemistry旗下杂志Chemical Science上。
研究团队设计出具有酸性依赖性的G-四链体过氧化物酶。目前报道的大部分G-四链体过氧化物酶都显示在pH为弱碱性的溶液条件下呈现较好的催化活性,上述实验结果显示,当G-四链体序列中含有多个末端A碱基时,在ABTS-H2O2体系下,弱酸性溶液中的催化活性较好。为进一步设计出具有酸性依赖性的G-四链体过氧化物酶,该团队在d(AG4A)序列的3'末端引入-CCCCCCC(-C7)片段,即d(AG4AC7),该序列在特定的酸性溶液中可以组装为“G-四链体+I-motif”交替连接的超分子DNA结构,在中性或碱性溶液中则主要以单链或不完全互补的双链形式存在。因此,d(AG4AC7)当且仅当体系在弱酸条件下(pH 4.5-6.0)显示出较强的催化活性。相同原理,d(AGBrGGBrGAC7)(F13C7)、3'AG5'-5'GGGACCCCCCC3'(AGS55C7)两条序列与hemin形成的复合物结构显示出类似的特性。3'AGG5'-5'GGACCCCCCC3'(AG55C7)序列中,3'AGG5'-5'GGA3'片段形成的四分子G-四链体具有非常强的热稳定性(Tm>95℃),因此AG55C7在酸性条件下组装超分子结构,在非酸性条件下以四分子G-四链体单体形式存在,使该序列的催化活性受pH影响有限(图5)。该研究成果发表在Royal Society of Chemistry旗下杂志Chemical Communications(DOI:10.1039/D0CC03082A)上。
裴仁军课题组博士后曹艳伟为论文第一作者,裴仁军为通讯作者,相关工作得到国家自然科学基金青年基金、江苏省自然科学基金青年基金、中国博士后科学基金会资助以及中国博士后科学基金会面上项目的支持。
图1.(A)G-四链体过氧化物酶在ABTS-H2O2体系下的催化流程图;(B-C)上述序列与NMM和hemin结合后荧光性能和催化活性对比
图2.(A-D)AG4A、F12、F14和F13形成的四分子G-四链体;(E-F)四条序列与NMM和hemin结合后荧光性能和催化活性对比
图3.(A-E)AG55、AGS55、A33G55、A55G33和AG33形成的四分子G-四链体
图4.(A)AGS55、AG55、A33G55、A55G33和AG33在pH 5 KCl中的圆二谱图;(B)1.8μM NMM分别滴定2.4μM AGS55、AG55、A33G55、A55G33和AG33;(C)AG4A、AGS55、AG55、A33G55、A55G33和AG33在KCl和NaCl(pH 5)的V0值统计;(D)不同序列V0值随溶液pH的变化曲线
图5.(A)AG4AC7、F13C7、AGS55C7和AG55C7形成DNA超分子结构的单体及其组装示意图;(B)AG4AC7和AGS55C7组装结构的pH可控性;(C)AG4AC7、F13C7、AGS55C7和AG55C7序列V0值随溶液pH的变化曲线
版权与免责声明:
(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。
(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。
(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。