当前位置: 资讯 - 新材料 - 科技前沿

深圳大学饶峰《Science》评述:相变存储材料的液-液转变机制

来源:材料科学前沿 1753 2019-06-15

6月14日,深圳大学材料学院饶峰教授在Science发表题为Catching structural transitions in liquids.Raoet al.,Science364, 1032–1033(2019)的评述论文。


相变随机动态存储器(Phase-change random-access memory,PCRAM)是最具潜力的新一代非易失性存储器,在革新现有冯诺依曼计算体系架构、实现人工智能神经元计算方面已成为业界、学界的研究热点。PCRAM最显著的特性在于高操作速度且数据非易失性:高温(600-700 K)下,相变存储材料可实现纳秒乃至亚纳秒级高速晶化;而在室温(300 K)下,非晶态数据可实现十年以上的稳定保持。这说明相变材料的过冷液相(supercooled liquid phase)在玻璃转变温度Tg与熔点Tm之间存在着巨大的动力学变化(kinetics change),然而这种动力学反差的微观结构起源却始终是个谜。这是因为,相变材料快速的(纳秒-亚纳秒)晶化特性致使探测其过冷液相中的结构转变(Liquid-liquid phase transition,LLPT)变得极具挑战,需采用超快(飞秒级)时间分辨手段方能在晶化发生之前捕捉结构信息。


通过采用飞秒级同步辐射硬X射线衍射技术,Zalden等人发现AgInSbTe、Ge15Sb85两种典型的相变材料的过冷液相中存在一种LLPT,即短程序上存在Peierls distortion增大(原立方晶格八面体中六个较均一的化学键分裂为三长三短键),以及中程序上的相对应的化学键的长短调制。过冷液相在淬火过程中,经历此LLPT后,原子间电子局域化程度增强,致使液相体系更加粘滞(原子迁移受阻):即LLPT之前高温的脆性(fragile)液相转变为LLPT之后低温的刚性(strong)液相,证实此LLPT正是过冷液相动力学转变的结构诱因,发生了Fragile-to-strong crossover。这一发现揭示了相变存储材料高温高速晶化且低温数据非易失特性的物理本质,为设计性能更为优良的新型相变材料提供了强大的实验检验武器;有助于加快发展基于PCRAM的高性能通用型存储器与类脑神经元计算器件。


该工作获得了国家自然科学基金优秀青年基金项目、广东省基础研究重大项目、深圳市基础研究布局与自由探索项目的资助。深圳大学材料学院为本论文第一通讯单位;材料学院饶峰教授为本论文第一、通讯作者,西安交通大学张伟教授与美国约翰霍普金斯大学马恩教授为共同通讯作者。


饶峰教授关于高性能缓存型超快(亚纳秒级)相变存储材料ScSbTe的研究工作发表在2017年11月Science上:Reducing the stochasticity of crystal nucleation to enable sub-nanosecond memory writing.Raoet al.,Science358, 1423–1427 (2017). ScSbTe材料的超快(亚纳秒级)晶化与非易失性特性同样得益于潜在LLPT诱发的动力学Fragile-to-strong crossover。



论文链接:https://science.sciencemag.org/content/364/6445/1032

版权与免责声明:


(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。


(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。


(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

热点新闻推荐
COPYRIGHT 颗粒在线KELIONLINE.COM ALL RIGHTS RESERVED | 津ICP备2021003967号-1 | 京公安备案 11010802028486号