聚合物薄膜电介质电容器具有易加工、柔性好、高功率密度、快的放电速度等优点,成为电子电力系统不可或缺的储能元件之一。但是现有的聚合物电介质材料通常能量密度过低,无法满足高功率系统、能源系统等对高储能密度的要求,且材料的介电常数和击穿场强存在难以同时提高的问题,开发新型高储能密度电介质材料成为迫切需求。
近日,西安交通大学电信学部电子科学与工程学院周迪教授课题组提出了通过固相反应和筛分相结合的简单实用机械方法制备了BaTiO3-Bi(Li0.5Nb0.5)O3(BT-BLN)纳米填料并与P(VDF-HFP)复合制备了高质量的P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3介电纳米复合薄膜,成功实现了极化强度与击穿场强的协同优化,实现储能密度极大提升。该工作通过对P(VDF-HFP)基纳米复合薄膜在纳米颗粒分布状态与极化强度和击穿场强之间内在关系的深入探索,结合有限元仿真技术对击穿过程的动态解析,探索了复合薄膜的机电失效机制,并深刻揭示了BT-BLN纳米填料对聚合物储能性能的增强机制,P(VDF-HFP)基纳米复合材料中获得了14.2 J/cm3(Eb≈ 497 MV/m)的储能密度。该研究所提出的设计思路展现出重要的工程应用价值。
该研究成果以“Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3nanocomposites” 为题,近日在国际著名期刊《纳米能源》(Nano Energy,IF=16.602)上在线发表。西安交通大学国际电介质研究中心博士生王鹏建为本文第一作者,周迪教授为本文通讯作者,西安交通大学为本文第一作者和第一通讯单位。本文的合作者有西安交通大学能动学院苏进展教授和电气学院刘文凤教授。该研究工作是周迪教授课题组在陶瓷/聚合物复合电介质储能领域研究成果发表在Journal of Materials Chemistry A(IF=11.301)国际著名期刊后的又一研究成果。
该研究工作得到了国家重点研发计划、电气绝缘与电力设备国家重点实验室、中央高校基本科研业务费等的支持。贾春林科学家工作室代艳竹工程师在SEM方面给予帮助,西安交通大学仪器分析中心王瑜工程师在纳米粒度分析方面给予帮助。
论文链接:
周迪教授课题组主页:http://gr.xjtu.edu.cn/web/zhoudi1220/1
上一篇: 小于零点一毫米的机器人诞生
版权与免责声明:
(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。
(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。
(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。