新材料
分享

取消

中国科大等实现微孔框架离子膜内近似无摩擦的离子传导

来源:中国科学技术大学
2023-05-17 1436

颗粒在线讯:中国科学技术大学教授徐铜文/杨正金团队与合作者,针对离子膜普遍存在的“传导性-选择性”相互制约关系,提出了一类新型三嗪框架聚合物离子膜。基于刚性通道的限域效应和通道内的“离子配位”机制,这类膜材料展示出近无摩擦的离子传递,实现了水系有机液流电池快充,且电池充放电电流密度达到500 mA/cm2,是当前普遍报道值的5倍以上。4月26日,相关研究成果以《三嗪框架聚合物膜内近无摩擦的离子传导》(Near-frictionless ion transport within triazine framework membranes)为题,发表在《自然》(Nature)上。

  离子膜是水电解槽、燃料电池、氧化还原液流电池和离子捕获电渗析等相关过程的关键部件。离子在膜内的传递效率取决于离子跨膜的能垒,因此,在膜内构筑高效离子通道、降低离子跨膜传递能垒是开发高性能离子膜的关键。以Nafion膜为代表的“微相分离”离子膜具备尺寸宽的离子通道,能高效传导离子,但离子通道吸水后易溶胀,导致膜机械强度下降、选择性/阻隔性降低(图1a),因而适用于对选择性/阻隔性要求不高的应用。自具微孔离子膜通过半刚性高分子链无法有效堆叠而在膜内形成微孔通道(图1b),膜内微孔的尺寸筛分效应提高离子选择性、丰富的孔道提高小尺寸离子的传递效率;而膜内高分子链半刚性的特性可能导致自具微孔离子膜应用过程中的老化。因此,如何在膜内构筑全刚性限域微孔并调控离子与通道的相互作用,从而逼近离子传导速率的极限,是开发新一代离子膜的关键。

  科研团队经过长期研究积累和大量实验探索,设计了一类新型的“微孔框架聚合物离子膜”,提出了刚性微孔通道内“离子配位”机制(图1d),实现了膜内近似无摩擦的离子传导和水系有机液流电池的快充。关键创新成果包括:一是利用有机溶胶凝胶反应,一锅法制备了系列含疏水框架和亲水功能侧链的自支撑微孔框架离子膜(图1e、1f),实现了膜吸水后保持疏水框架主体结构尺寸稳定,避免了离子膜吸水对微观上离子通道尺寸和膜宏观机械强度的不利影响,为离子传递提供了刚性微孔限域环境。结果表明,该膜具备优异的抗老化和耐溶胀性能(图2a-d),膜的吸水溶胀率仅有3.1%(图2d),在较低的吸水率下能实现高效离子传递(图2e)。二是提出刚性微孔通道内“离子配位”机制。该团队在微孔框架离子膜中引入荷电基团和以及多种可以与离子发生弱相互作用的功能基团,利用静电作用、离子-偶极作用等相互协同,降低离子在膜内传递能垒(图3a)。固体核磁共振和PFG-NMR测试(图3b-f)表明:Na+在膜内的自扩散系数达到1.18×10-5cm2/s,接近水溶液中Na+扩散系数(1.28×10-5cm2/s)和无限稀释Na+扩散系数(1.33×10-5cm2/s)。三是以微孔框架离子膜为隔膜组装的水系有机液流电池(蒽醌/铁氰化钾体系,图4a),膜面电阻仅为0.17 Ω·cm2(图4b)。该电池具备优异的倍率性能(图4c),其充放电电流密度可高达500 mA cm-2(当前文献报道均普遍≤100 mA cm-2),且在高电流密度下循环充放电中保持稳定(图4d)。该膜实现了水系有机液流电池快充,在不同电流密度下的电池的能量效率和容量利用率均显著高于文献报道值(图4e、4f)。该工作拓展了这一成果,实现了中性体系液流电池的快充。

  论文匿名评审人评价:“这种阳离子膜在液流电池中展示出非凡的性能,其对基于分子型活性物质的水系液流电池研究体系,具有重要的借鉴意义。与迄今为止使用的最好的膜相比,此类阳离子膜的性能显著提高。”“在这种具备刚性限域离子通道的膜内,钠离子的扩散系数接近在水中的状态。”

  研究工作得到国家重点研发计划、国家自然科学基金和中国博士后科学基金等的支持。

图1.本文设计思路及三嗪框架聚合物离子膜的制备

图2.三嗪框架聚合物离子膜优异的尺寸稳定性和离子传导性

图3.三嗪框架聚合物离子膜实现近似无摩擦离子传递及离子传导机理

图4.三嗪框架聚合物离子膜实现水系有机液流电池快充

上一篇: 化学所在可控双交联高强水凝胶领域取得进展 下一篇: 武汉岩土所在耐海水腐蚀新型高强注浆材料研...

【版权提示】(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。

(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

热点新闻推荐