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Introduction

The climax of the industrial revolution was marked by the
rapid growth of industry, and advancement in technolo-
gies have further fueled this industrial expansion, leading
to a surge in economic growth. However, these technologies
have also increased the degree of destructive human inter-
ference with the biosphere, as key contributors to two urgent
environmental problems: deterioration of natural resources
and global climate change. It is thus the need of the hour
to promote cleaner, sustainable production practices using
renewable energy sources [1] to better utilize resources in
ways that minimize effects on the environment. Among the
destructive effects of current industrial practice, automotive,
aerospace, and power generation industries are prime con-
tributors of carbon emissions. Between 1950 and 2010, total
worldwide energy consumption increased 5.8 times, andCO2

emissions increased sharply from 310 to 390 ppm during the
same time period [2]. This sharp increase in carbon footprint
is a central cause for sudden temperature fluctuations and
global climate change.

In addition to these direct environmental effects of current
industrial practice, the excessive utilization of non-recyclable
materials and conventional manufacturing methods pose
risks to energy security. Various manufacturing techniques
were compared in this view; additive manufacturing (AM)
techniques have proven to be a promising approach for
designing sustainable manufacturing practices [3]. The
global advent of AM technologies has revolutionized the
manufacturing sectors by creating complex physical struc-
tures with excellent mechanical characteristics that can
improve operational performance [4, 5]. AM has helped to
eliminate the shortcomings of subtractive manufacturing
techniques withminimal usage of rawmaterials and effective
energy utilization [6]. In particular, lightweight components
with improved mechanical strength can be constructed using
AM techniques for aerospace and automotive applications.
This approach has led to environmental and sustainable
benefits like reduced carbon footprint and better resource
utilization [7, 8].

One example of AM manufacturing is the use of three-
dimensional (3D) digital models, which can be converted
into physical models with defined materials and controlled
process parameters. 3D bioprinting is a subset of AM tech-
nique, a layer-by-layer additive approach used for making
artificial 3D tissue constructs from biomaterials either with-
out living cells (functional constructs) or incorporated with
living cells (cell-laden construct). Over millennia, nature has
evolved to produce high-performance materials and struc-
tures; the techniques of bioprinting aim to take advantage of
natural design to improve the sustainability and effective-

ness of industrial design. Sustainable biomaterials should
be non-toxic, recyclable, and extracted from the environ-
ment in an ecologically responsiblemanner. Natural products
such as keratin extracted from chicken feathers, hydroxya-
patite from eggshells, and pectin extracted from fruit pulp
are innovative examples of sustainable biomaterials. These
sustainable biomaterials are gaining profound attention than
synthetic biomaterials [9, 10]. The use of 3D bioprinting
in tissue engineering has generated promising results in the
field of medical science, including applications in tissue and
organ regeneration, prosthetics, and implants. These medi-
cal applications, along with dental materials, biological inks,
biosensors, and food and animal products (cultured meat),
comprise the prominent share of the current global 3D bio-
printing market [11].

The distinctive physicochemical properties of biolog-
ical nature, including integrated structure–function rela-
tionships, provide enormous inspiration for the design of
next-generation industrial materials. Bioinspired structures
promote the design of physical characteristics that save
material and energy by benefitting the environment through
the reduction of carbon footprint [12]. Bioinspired struc-
tures processed by 3D printing currently include applications
such as sustainable vascularized microtissues, honeycomb
branched biomimetic microstructures for study of cancer cell
migration, lotus-root like biomimetic materials for cell deliv-
ery and tissue regeneration, and other uses [13–15]. The
timeline of development of sustainable AM techniques is
shown in Fig. 1.

Integration of sustainabilitywith 3Dbioprinting also facil-
itates realization of the concept of co-existence of human
beings with nature in productive harmony. By considering
environmental and socio-economic factors in product design,
bioprinting sustains the needs of present and future genera-
tions. A survey of the literature indicates that sustainable
manufacturing is a key tool for protecting the environment; in
particular, 3D bioprinting enhances the feasibility of sustain-
able manufacturing [3]. This perspective aims to evaluate the
sustainable solutions created through 3Dbioprinting technol-
ogy by incorporating nature-derived materials and structures
into industrial design. It elucidates the increased demand for
3D bioprinting in the health care, food and agriculture indus-
tries, and considers how factors such as energy conservation
rate, the optimal recycling rate of surplus raw materials, pro-
duction time, carbon management strategies, and other fac-
tors can affect human society and the global environment. In
this study, we aim to familiarize readers with the sustainable
materials and bioinspired structures used in 3D bioprinting
technology. We focus on 3D bioprinting as a manufactur-
ing resource for cleaner production and offer predictions of
future directions for creating sustainable industrial value.
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Fig. 1 Timeline of development sustainable additive manufacturing (AM) techniques

Fig. 2 Sustainable benefits of
3D printing over conventional
manufacturing design

Bioprinting: a way toward sustainable
and circular economy

3D bioprinting is a unique platform in the additive manu-
facturing sector for creating complex biology-based objects
thatmimicnatural biological components. 3Dbioprintinghas
shown a commendable capability for constructing structures
such as tissues, cancer tumor models, cartilage and bone,
and implants using a wide range of biomaterials such as nat-
ural polymers, synthetic polymers, cell-laden hydrogels, and
bioinks [16]. Bioprinting can be classified by the methods
of creating soft/hard tissues such as extrusion-based bio-
printing, inkjet-based bioprinting, stereolithography-based
bioprinting, and laser-assisted bioprinting. Extrusion-based
bioprinting includes pneumatic, piston-driven, and screw-

driven dispensing. Inkjet-based bioprinting is used for
depositing a small volume of cell-laden constructs and bio-
materials such as hydrogel, polymers, and small molecules
with precise control over shape fidelity. Resins and pho-
topolymers are widely used materials in stereolithography-
based bioprinting (VAT photopolymerization, digital light
processing (DLP)), especially for crosslinking the bioinks.
Laser-assisted bioprinting is widely used for printing metals,
synthetic polymers, ceramics, and composites [17]. Scopus
search results of literature from 2010 to 2020 show that
extrusion-based bioprinting has primarily used biofabrica-
tion techniques to create bone scaffolds, with other widely
used techniques including inkjet-based bioprinting, laser-
assisted bioprinting, and stereolithography-based bioprinting
[18]. According to regional and segment forecasts, the 2020

123



Bio-Design and Manufacturing (2022) 5:412–423 415

Table 1 Sustainability dimensions in 3D bioprinting systems [26–28]

Dimensions of sustainability Criteria

Economic Reduced public health costs

Increased market acceptance

Positive economic impact

Reduced production cost

Reduced medical cost

Machinery cost

Environmental Minimized negative environmental impacts

Utilization of sustainable materials

Process and life cycle energy

Improved waste management

Decreased emission of indoor pollutants and greenhouse gases

Social Higher quality of life

Ethical framework

Cruelty-free

Improvements in health care

Social acceptance

Copyright and patents

Technical (Bioprinting) Degrees of freedom

Adoption of green materials for printing

Optimized path planning algorithm

Design optimization using part consolidation, lightweight consideration and topology optimization

Support-structure optimization

Small batch production

Shorter product life cycle

Recycling and remanufacturing

global 3D bioprinting market for medical and healthcare sec-
tors is estimated to be around 1.4 billionUSD and is expected
to increase at a compound annual growth rate of 15.8% from
2021 to 2028 [19].

Apart from fabricating implants and tissues, the 3D bio-
printing industry is also investing in 3D food production.
According to FAO (Food and Agriculture Organization of
the United Nations), global livestock contributes to 14.5% of
greenhouse gas emissions and utilizes around 8% of fresh-
water resources. Cultured meat (CM), which produces meat
sustainably through in vitro culture of animal cells without
sacrificing animal life, is an emerging sustainable meat prod-
uct, with the potential tomeet the ever-increasing globalmeat
demand for reduction of nutrition-related diseases and food-
borne illnesses [20]. From 2015 to 2020, about 320 million
USD has been invested by CM industries for livestock pro-
duction. Reflecting growing interest in this approach, CM
investments reached 161 million USD in 2020 alone [21].

3D bioprinting methods are known for their high “buy-to-
fly” ratio, which is defined as the ratio of the mass of starting
material to the mass of the finished product. The expanding
build volumes can help in making 3D bioprinting technology

feasible for small-batch production, thereby also increas-
ing its efficiency. In adopting principles of sustainability,
3D bioprinting demonstrates several benefits (Fig. 2): opti-
mized utilization of energy and raw materials, optimization
of design and short supply-production chains, minimization
of post-printing procedures, shape consolidation in a single
step, and optimized multi-material processing time [22]. The
social, economic, environmental, and technical dimensions
of sustainability in 3D bioprinting systems are illustrated
in Table 1. 3D bioprinting processing techniques can pro-
vide sustainable solutions by promoting a circular economy,
which is defined in two ways: by recurrent use of biologi-
cal nutrients that are present in the biosphere and by use of
technical components that are designed to recycle at high effi-
ciency without entering the biosphere [23]. Several factors
need to be considered while selecting a particular manufac-
turing approach, including the associated costs of the process,
material waste, and rates of energy consumption. A circular
economy seeks to rebuild capital and enhance the flow of
goods and services. Bioprinting can make significant reduc-
tions in material costs and increased realization of a circular
economy in terms ofmaintenance, recycling, and remanufac-
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turing of products and goods [24]. For instance, starch can
be obtained for bioprinting even from waste streams in the
potato processing industry (15 kg of starch-rich waste can be
extracted from 100 kg of potatoes) [25]. Further, shortened
supply chains and reductions in materials can lower produc-
tion and transportation costs.

Sustainable materials for 3D bioprinting

A sustainable environment can be facilitated by use of
biodegradable and recyclable polymers. The polymers cur-
rently used in 3D bioprinting are mostly byproducts from
petrochemical industries. An approximately 80% turnover
can be achieved just by printing polymers in AM for vari-
ous applications. These synthetic polymers can cause severe
damage to the ecosystem [29]: About 6.4 million tons of
plastic are dumped into the ocean every year, causing the
death of more than one million seabirds and 100,000 marine
mammals annually. The extremely slow degradation rate of
synthetic polymers exacerbates the environmental pollution
even further. The present necessity is to replace these syn-
thetic polymerswith sustainable biopolymers [30], to achieve
a balance between environmental health, climate change,
and sustainable development. The constant demand for sus-
tainable next-generation materials has also created more
opportunities for AM techniques. Biopolymers derived from
plants, microbes, and other organisms can be an ideal, more
sustainable alternative to their synthetic counterparts [30].
For instance, starch-derived polymers such as PLA (poly-
lactic acid), PHB (poly-hydroxybutyrate), and PHA (poly-
hydroxyalkanoates), derived from wheat, maize, potato, and
cassava processed through bioprinting offer potential envi-
ronmental benefits by reducing the carbon footprint of the
manufacturing process. These biopolymers generate fewer
volatile by-products and pollutants than synthetic petroleum-
based polymers, with greater sustainability [31].

Alginate, a natural polymer derived from marine plants
and bacteria, is used as a hydrogel in the biofabrication pro-
cess. It has strong mechanical properties that are ideal for
biofabrication. Alginate has been combined with nanocellu-
lose for use as a bioink to assess its biocompatibility with
human nasoseptal chondrocytes. This composite material
was printed using an extrusion-based 3D bioprinter with
optimized process parameters. The alginate-nanocellulose
bioink product demonstrated shape fidelity (reversible stress
softening behavior), a high degree of shear thinning, and
a stable build volume. Bioink hydrogels formulated from
pectin (a polysaccharide found in the middle lamella of plant
cells) by crosslinking with GPTMS ((3-Glycidyloxypropyl)
tri-methoxy-silane) is a novel and versatile biomaterial that
shows good viscosity, yield stress and cytocompatibility
characteristics [32, 33].

Lignin, a biomass material from industrial feedstock
waste, has been combined with synthetic polymers such as
acrylonitrile–butadiene–styrene (ABS) and nylon on a 40:60
weight ratio to increase manufacturing sustainability. The
lignin-based biocomposite, produced by an extrusion-based
AM technology, fused deposition modeling (FDM), exhibits
greater tensile strength and stiffness at room temperature.
Sustainable vascularized microtissues have been 3D printed
as self-assembled lignin-containing components for use in
soft tissue repair in vivo; lignin-based constructs have also
been applied as sustainable in vitro disease models [34]. Lig-
nocellulosic materials (cellulose, hemicellulose, and lignin)
from various sources (wood, bacteria, and fungi) can be used
in 3D bioprinting as nanofiber or nanocrystals as they are
sustainable biomaterials with tunable mechanical properties
and biocompatibility. Lignocellulosic materials are widely
used in tissue engineering, wound dressing applications,
and as skin tissue mimics [35]. Cellulose-based nanofibers
(CNF) are promising sustainable materials for hydrogels,
which exhibit excellent biocompatibility, mechanical perfor-
mance, adequate compressive strength, and elasticity; these
hydrogels also show potential for use as elastic hydrogels.
Affordable patient-specific scaffolds that mimic different tis-
sues can be biofabricated by 3D bioprinters using cellulose
without supporting structures [36]. The various sustainable
materials derived from nature and processed by 3D bioprint-
ing are illustrated in Fig. 3.

Bioinspired structures and product designs

The unique combination of design and superior properties of
biomaterials is employed in various engineering systems to
meet certain functional requirements. Biological design, or
ecological design, enables minimal use of materials to cre-
ate an ecologically sustainable manufacturing process. The
distinctive characteristics of biological structures, such as
hierarchical organization, multi-functionality, self-healing,
self-assembly, and enhanced physical characteristics, ensure
savings in time, materials, and energy in manufacturing.
Bioinspired structures such as sutures, gradients, interlocks,
cross-lamellae, and honeycombs are being considered for
AM-based bioprinting applications [37, 38]. In addition
to freeform design (customized design), simulation-driven
design and lattice design approaches are used in design of
AM fabricated components with varying levels of biologi-
cal input or bioinspiration [39]. Minimizing the weight of
materials while maintaining the maximum strength in hon-
eycomb structures has proved to be an excellent innovation
in the field of composite structures. 3D-printed, evalua-
tion of ABS-composite honeycomb structures using FTIR
(Fourier Transform Infrared Spectroscopy) characterization
and impact analysis indicated that 3D printed multilayered,
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Fig. 3 Naturally derived sustainable materials used in 3D bioprinting techniques

fabric-sandwiched honeycomb composite structures have
potential mechanical applications in the mass transport and
avionics sectors [40]. The bioinspired structures proved to be
a better option for these uses because of their light weight and
efficient fuel consumption; manufacture of these structures
also requires less raw materials than conventional materials,
and it also reduces the carbon footprint [41].

From a nanoscale level to centimeter-scale level, human
bones are composed of collagen fibrils, mineral platelets, and
osteons. This hierarchical arrangement of bone architecture
helps bones tomove around andworkwith enhanced stiffness
and toughness [37]. The design of a cranial prosthesis cre-
ated using a generative design approach is called a Voronoi
diagram or tessellation. Using this approach, a customized,
patient-specific cranial implant was designed by mimicking
bone trabeculae to repair cranial defects [42]. Lightweight
titanium alloys have been fabricated using laser-based AM
approach, selective laser melting (SLM), and a thermoset
polymer resin was processed by digital light processing for
cortical bone applications [43]. Direct ink writing (DIW)
is an AM approach used to construct viscoelastic ink using

hydroxyapatite, layer by layer, for engineered bone applica-
tions [44]. Table 2 depicts various bioinspired structures and
bioprinting methods using suitable biomaterials for various
biomedical applications.

Energy sustainability in 3D bioprinting

Life-cycle inventory of various bioprinting techniques indi-
cates the usefulness of precise machine tools as a suitable
eco-friendly material to consume less energy in manufac-
ture. Laser-assisted bioprinting consumes more energy than
all other bioprinting techniques. Powder feed and preheating
require 40% of system’s energy; 16% is spent on opera-
tion of the laser system, and 25% is spent on feeding and
building piston stepper motors [48, 49]. To save energy and
reduce carbon emissions, a better thermal management sys-
tem replacing lasers, such as selective heat sintering (SHS),
selective mask sintering (SMS), and selective inhibition
sintering (SIS), needs to be introduced to 3Dbioprinting tech-
niques. Even though these alternate systems still use thermal
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Table 2 Bioinspired structures used in biomedical applications [15, 45–47]

Bioinspired structure 3D bioprinting technique Biomaterials Biomedical application Enhanced characteristics

Hollow tubular structures Extrusion-based
bioprinting

Polyethylene glycol
(PEG) derivatives
mixed with fibroblasts

Vascular constructs Biocompatible

Bioinspired interface
structures

Stereolithography-based
bioprinting

polyethylene glycol
(PEG)/β-tricalcium
phosphate (β-TCP)
scaffold

Cartilage—Bone Biocompatible

Tubular structures 4D bioprinting Gelatin- polycaprolactone
(PCL)

Bilayers, cell-laden
bioscaffolds for tissue
engineering

Compatible;
Biodegradable

Native stiff bone-like
constructs

3D bioprinting Polyglycolic
acid/polylactic acid
(PLA/PGA) scaffolds

Cartilage—bone Biocompatible, stiffness

Bioinspired lattice
structures

Laser-assisted bioprinting Functionally graded
Inconel 718 superalloy

Hip implant Stronger, enhanced
load-carrying ability

Helicoidal structure
inspired by mantis
shrimp

Near-field electrospinning
technique (NFES)—a
micro-AM technique

polycaprolactone
(PCL)/polyvinylidene
fluoride (PVF)

Bone implants High load-carrying
capacity and better
crack and delamination
resistance

Bioinspired cellular
structures

Stereolithography-based
bioprinting

Photopolymerizable
polymer (composed of
urethane acrylate
oligomers)

Bone biomimetic
implants

Balanced mechanical and
biological properties

Biomimicking native
tissue

3D bioprinting Chitosan-HAP
(hydroxyapatite)

Hydrogel, scaffolds, bone
tissue engineering

Biocompatible, cell
viability, cell-friendly
environment, adequate
mechanical properties

Extrusion-based
bioprinting

Collagen, gelatin,
alginate, silk fibroin

Bioink, hydrogel Good mechanical
properties,
biodegradable, cell
viability

Inkjet-based bioprinting Fibrin ink Vascular constructs Cell proliferation and
microvasculature
formation

energy for efficient energy consumption, their use is lim-
ited to polyamide materials only [50]. In AM techniques,
product design can be simplified through part consolidation,
resulting in a lightweight structure, enhanced performance,
and prolonged service life. A framework known as generic
quantitative models can be used to systematically investigate
the sustainability potential of part consolidation; this assess-
ment indicated that part consolidation design has a significant
effect on sustainability, reducing energy consumption and
environmental impact by 20% [51, 52].

Another new concept introduced by researchers to reduce
consumption of materials and electricity is using Design for
Sustainable Additive Manufacturing (DFSAM) approach,
which are predictive models for sustainable manufactur-
ing to minimize negative environmental impacts. One AM
machine manufacturer, EOS, has followed the “cut material
consumption” principle to lessen environmental impact; this
approach reduced the materials consumption rate by 75%,

which resulted in reduction of CO2 emissions by 40% [48].
The energy consumption and environmental analysis of var-
ious bioprinting techniques are summarized alternative to
lasers in Table 3. Analysis of these methods for feedstock
production indicated that there was still only limited data to
evaluate their impact on direct and indirect emissions [53].

Specific energy consumption (SEC) of bioprinting tech-
niques is calculated as energy consumption per unit depo-
sition volume. The average applied energy per unit volume
of bioprinted parts during the layered deposition process is
shown in Eq. (1):

SEC � PT /V , (1)

where P is input power (in W or kW), T is processing time
(in seconds), and V is the volume of the deposited object
(in cm3). The carbon footprint for bioprinting techniques is
given by Eq. (2):
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Table 3 Life cycle inventory (LCI) of bioprinting techniques

Bioprinting
technique

Machine tool Material Average operational
power (kW) range

Specific energy
consumption (SEC)
range

Carbon footprint Reference

Laser assisted bioprinting technique

Selective laser
sintering (SLS)

DTM sinterstation Polymers 12.500–16.800 107.4–144.3 1.1 (kgCO2-eq/kg) [54, 55]

EOSINT PA powders 2.920–6.610 107.0–145.1 6.7–6.9
(kgCO2-eq/kg)

[56, 57]

3D-Systems HiQ +
HiS

PA 12 5.500 130.0 6.9 (kgCO2-eq/kg) [58]

SLM Concept laser 316L 1.090–3.350 83.0–588.0 0.44 (tonCO2)/ (t on
SS)

[49]

Aluminum 0.790 309.1–533.0 8.96 (kgCO2-eq/kg) [59]

MTT SLM 316L 1.090 83.0–108.0 0.44 (tonCO2)/ (ton
SS)

[49]

Renishaw AlSi10Mg 1.166 566.2 N.A [60]

Direct metals laser
sintering (DMLS)

LUMEX 25 DMLS 316L 3.6 204.4–470 1.95 (kgCO2-eq/kg) [61]

Laser direct
deposition (LDD)

Laserline, GmbH 316L 2 1052 9.33 × 10−2

(kgCO2-eq/kg)
[62]

Extrusion based bioprinting technique

FDM Stratasys FDM ABS 1.320–11.000 83.1–1247.0 0.34 (kgCO2-eq/kg)
(NRE)

[54, 63]

0.17 (kgCO2-eq/kg)
(RE)

PC 2.450 519.0–536.0 3.04 × 10−1

(kgCO2-eq/kg)
[49, 64]

Stereolithography based bioprinting technique

Stereolithography
(SLA)

3D systems SLA SL 5170 1.200–3.000 74.5–116.9 1.36 ×
10−1(kgCO2-
eq/kg)

[54, 65]

Inkjet based bioprinting technique

Multi jet fusion
(MJF)

HP Jet Fusion 4210 PA 12 8.525 98.69–152.54 1 Kg of PA 12
produces 45.8
(kgCO2-eq/kg)

[66]

Other bioprinting technique

Electron beam
melting (EBM)

Arcam Ti6Al4 2.133–2.220 61.0–375.0 0.43–1.12
(kgCO2-eq/kg)

[67]

316L 528.90–560.60 9.85–20.68
(kgCO2-eq/kg)

[49, 68]

NRE: non-renewable electricity; RE: renewable electricity; N.A: not available

(2)

Carbon footprint
[
KgCO2

] � Epart [GJ]

+ CESTM
[
KgCO2/GJ

]
,

where Epart is the energy consumed for producing one part
and CESTM is the carbon emission signature calculated for
the energy mix at a particular year and a particular country
[63]. While developing sustainable practices in bioprint-
ing, the interaction between SEC of bioprinting machine
tools and materials should be thoroughly investigated, as it

may have environmental impacts such as carbon emissions.
SEC of bioprinting techniques is influenced not only by the
choice of processing materials but also by the specific pro-
cess parameters chosen for processing them. For example,
the laser-assisted bioprinting technique known as “LENS”
requires higher energy density with smaller powder size and
layer thickness. Higher energy density causes higher SEC
which has to be minimized to maintain energy efficiency and
to reduce carbon emissions [65].
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Table 4 Potential applications of sustainable 3D bioprinting applications

Potential applications Bioprinting techniques Materials/Structure Sustainable features Reference

Nutritional applications:
cultured meat (synthetic
meat); food printing;
nutraceuticals and health
supplements

Extrusion-based bioprinting,
inkjet-based bioprinting
binder jetting,
chocolate-based ink 3D
printing (Ci3DP),
milk-based 3D printing

Insects, animal byproducts,
plant-based ingredients,
fresh vegetables,
milk-based products

Reduction in food waste,
sustainable food
development, use of
alternative sources of
protein, enhanced
nutritional benefits for
targeted public in order to
improve health benefits,
improved dietary practices,
reduced energy
consumption and carbon
emission

[20, 70–76]

Pharmacological
applications:

patient-specific drug delivery
and screening

3D bioprinting Gelatin and sodium alginate
mixed with hepatorganoids
with HepaRG cells,
biopolymers

Drugs for personalized
treatment of hepatocellular
carcinoma (HCC) liver
cancer, with biopolymers
which reduce carbon
emission

[77, 78]

Tissue engineering
applications

Laser-assisted bioprinting,
extrusion-based
bioprinting, inkjet-based
bioprinting

Naturally derived polymers,
native cells, mimicking
native tissues, bioinks

Possibility of producing
artificial tissues (soft
tissues and hard tissues),
customized patient-specific
therapies with enhanced
biological and mechanical
properties, reduced usage
of synthetic materials and
energy consumption

[9, 16, 78, 79]

Regenerative medicine: For
human space exploration
and planet colonization

Extrusion-based bioprinting,
inkjet-based bioprinting

Biobased products Stimulates space research
and technology
development,
self-sustainable mission

[80]

Conclusions and future prospects

Biomaterials and bioinspired structures play a significant role
in the development of sustainable 3D bioprinting practices.
Derivingbiomaterials from renewable resources andprocess-
ing them through 3Dbioprinting is challenging inmanyways
[9]. This perspective highlights the correlation between bio-
printing factors and the socio-economic and environmental
aspects of sustainable production by focusingonbiomaterials
and bioinspired structures [30]. This focus helps researchers
to assess whether 3D bioprinting can meet the needs of envi-
ronmental sustainability by using naturally derivedmaterials,
recyclable materials, and renewable energy sources [69].
Table 4 lists some potential applications of sustainable 3D
bioprinting.

Despite the potential of 3D bioprinting in the above appli-
cations, there are still challenges and barriers to large-scale
production. Bioprinting has yet to adopt a wide range of
nature-derived materials as it has limited to use of cer-
tain classes of materials. Polysaccharides, a natural resource
derived from plant, fungi, and marine organisms, offer

important potential for savings in non-renewable energy use
(NREU) and greenhouse gas (GHG) emissions. Sustainable
3D bioprinting also shows immense potential for meeting
the growing demand for engineered tissues and high-quality
foods with low manufacturing costs. Polysaccharide-based
end products should be utilized more in 3D bioprinting to
improve significant environmental benefits [81].

The application of the 3R principle (reduce-reuse-recycle)
to bioprinting can facilitate effectivematerial utilization [31].
Further, increasing the degrees of freedom of bioprinting
techniques paves a way for development of new, more sus-
tainable methods and materials. Renewable energy sources
help to improve and reduce the environmental impact of 3D
bioprinting. Life-cycle assessment tools can improve the sus-
tainability effects of bioprinting by creating a positive impact
on the social, economic, and environmental aspects [82]. A
sustainable future can be ensured by improving government
policies, industrial norms, and public opinion. As responsi-
ble citizens, everyone must work to protect the planet from
the adverse effects of climate change, exhaustion of natural
reserves, and disruption of ecological balance.
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