当前位置: 资讯 - 科技前沿

沈阳自动化所加热炉优化控制研究取得进展

来源:沈阳自动化研究所 1015 2020-11-04

冶金行业能源消耗较大,是推进节能降耗的重点行业。高炉热风炉和加热炉等装置是节能降耗的关键环节,其燃烧控制与优化问题是国内外专家学者研究与关注的重点。

中国科学院沈阳自动化研究所科研团队以加热炉的优化控制为切入点,提出一种基于迁移学习的加热炉炉温预测算法。实现加热炉的优化控制,要克服加热炉生产过程中原料来源多样、生产条件多变、工况波动频繁等难题,对加热炉各个加热区的温度精准预测。同时,还需要满足工况对实时性的要求,对预测算法的计算效率和计算时间等性能指标提出更高的要求。

为了应对这些挑战,研究团队设计出基于时间卷积网络和迁移学习技术的多区炉温预测框架,并通过生成对抗网络来提升预测精度,建立实时的炉温预测模型。实例研究表明,团队提出的基于迁移学习的炉温预测框架在每个加热区快速建模的基础上均能提升预测精度。

相关研究成果发表在Sensors上,该研究为人工智能技术应用于冶金行业加热炉能耗优化控制提供新方法。

基于迁移学习的炉温预测框架

版权与免责声明:


(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。


(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。


(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

热点新闻推荐
COPYRIGHT 颗粒在线KELIONLINE.COM ALL RIGHTS RESERVED | 津ICP备2021003967号-1 | 京公安备案 11010802028486号