据外媒报道,德克萨斯大学奥斯丁分校(University of Texas at Austin)科学家领导的国际研究小组发现,一些金属氧化物可以储存能量,而且远远超出理论极限,有望成为下一代锂离子电池的关键材料。
图片来源:utexas官网
该团队发现,这些金属氧化物拥有独特的储能方式,其储能能力是目前市面上常见的锂离子电池材料的三倍,有助于打造容量更大、体积更小、充电速度更快的电池。这些电池的性能更优异,可以应用于智能手机、电动汽车等领域。
研究项目负责人Guihua Yu表示:“近20年来,研究领域一直对这些材料超出理论极限的超高储能能力感到疑惑。本项研究的实验证据首次表明,这些材料通过空间电荷储存机制来储存额外的电荷。”为了证明这一现象,该团队找到了一种方法,监控和测量该元素如何随时间变化。参与该项目的包括得克萨斯大学、麻省理工学院、加拿大滑铁卢大学、山东大学、青岛大学和中国科学院的研究人员。
其核心发现是过渡金属氧化物。在这类化合物中,氧和过渡金属(如铁、镍和锌)相结合,将能量存储在金属氧化物中。这与传统方法不同,传统的电池通过让锂离子在这些材料中出入,或者转换晶体结构来储能。研究人员还发现,在一系列常规电化学过程中形成的铁纳米粒子表面,也可以存储额外的电荷容量。
研究显示,大量的过渡金属可以释放额外容量,而且可以收集高密度电子。但是,研究人员表示,要深入了解这些材料的潜力,还有很长的路要走。
研究采用的关键技术是原位磁测技术。利用这种实时磁监测方法,可以研究材料内部电子结构如何演变,还能通过测量磁性的变化,量化电荷容量。这种技术可用于研究小尺度电荷存储,其表征能力超出许多传统表征工具。Yu表示:“本项研究使用的是物理学家常用但在电池界很少使用的技术,并且获得了重要的研究成果。这是物理学和电化学的完美结合。”
版权与免责声明:
(1) 凡本网注明"来源:颗粒在线"的所有作品,版权均属于颗粒在线,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已获本网授权的作品,应在授权范围内使用,并注明"来源:颗粒在线"。违反上述声明者,本网将追究相关法律责任。
(2)本网凡注明"来源:xxx(非颗粒在线)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。
(3)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。